MUSE: Robust Surface Fitting using Unbiased Scale Estimates

نویسندگان

  • James V. Miller
  • Charles V. Stewart
چکیده

Despite many successful applications of robust statistics, they have yet to be completely adapted to many computer vision problems. Range reconstruction, particularly in unstructured environments, requires a robust estimator that not only tolerates a large outlier percentage but also tolerates several discontinuities, extracting multiple surfaces in an image region. Observing that random outliers and/or points from across discontinuities increase a hypothesized fit’s scale estimate (standard deviation of the noise), our new operator, called MUSE (Minimum Unbiased Scale Estimator), evaluates a hypothesized fit over potential inlier sets via an objective function of unbiased scale estimates. MUSE extracts the single best fit from the data by minimizing its objective function over a set of hypothesized fits and can sequentially extract multiple surfaces from an image region. We show MUSE to be effective on synthetic data modelling small scale discontinuities and in preliminary experiments on complicated range data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion Segmentation: A Robust Approach

A motion segmentation method, based upon robust least K-th order statistical model fitting (LKS), is proposed. Similar LKS based segmentation algorithms have been proposed for range data segmentation but non have been applied to motion segmentation. Moreover, the algorithm we propose here differs from other contemporary approaches using versions of LKS in a number of important ways. Firstly, th...

متن کامل

Robust Fitting Using Mean Shift: Applications in Computer Vision

Much of computer vision and image analysis involves the extraction of “meaningful” information from images using concepts akin to regression and model fitting. Applications include: robot vision, automated surveillance (civil and military) and inspection, biomedical image analysis, video coding, human-machine interface, visualization, historical film restoration etc. However, problems in comput...

متن کامل

Fitting Second-order Models to Mixed Two-level and Four-level Factorial Designs: Is There an Easier Procedure?

Fitting response surface models is usually carried out using statistical packages to solve complicated equations in order to produce the estimates of the model coefficients. This paper proposes a new procedure for fitting response surface models to mixed two-level and four-level factorial designs. New and easier formulae are suggested to calculate the linear, quadratic and the interaction coeff...

متن کامل

Statistical analysis of stochastic gradient methods for generalized linear models

We study the statistical properties of stochastic gradient descent (SGD) using explicit and implicit updates for fitting generalized linear models (GLMs). Initially, we develop a computationally efficient algorithm to implement implicit SGD learning of GLMs. Next, we obtain exact formulas for the bias and variance of both updates which leads to two important observations on their comparative st...

متن کامل

Estimating synonymous and nonsynonymous substitution rates.

Partitioning the total substitution rate into synnonymous and nonsynonymous components is a key aspect of many analyses in molecular evolution. Numerous methods exist for estimating these rates. However, until recently none of the estimation procedures were based on a sound statistical footing. In this paper, the evolutionary model of Muse and Gaut (1994) is used as the basis for two sets of pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996